Construction processes – from foundation to completion of a building

Part A: Basic Work Involvements in usual Building Construction projects

Major work components in typical building project

- Site formation
- Sub-structure works
- Construction of the main structure (superstructure)
- 4. Building finishes
- Building services installation

What will be involved in the Site Formation process?

Site formation is to carry out the necessary work to form and obtain a piece of land suitable to construct a building as required according to a design

However, under the hilly and congested environment of HK, very often quite a number of slope cutting works are required in the site formation process

What will be involved in the Sub-structure works?

Provide foundation to building Construct other building structures which is below ground, these include:

- a) transmit columns
- b) ground beams
- c) basement

What will be involved in the construction of the superstructure?

Construct major structural elements of a building, these include:

- a) vertical members: walls & columns
- b) horizontal members: beams & floor slabs
- c) other members: stairs, lift shaft etc.
- d) non-structural members: partition walls & other architectural features

What will be involved in building finishes works?

Provide proper finish and fitting out to a building, these include:

- a) provide internal partitioning
- by seal up & decorate all exposed surfaces: to wall (both ext. & int.), floor & ceiling
- b) provide other functional elements in building: window, door, false ceiling, rails
- c) other essential interior fixture: sanitary appliances, bench, pantry, cupboard etc.
- d) Other interior design decoration for highquality finishing requirements.

What will be involved in building services installation?

- Provide essential electrical & mechanical equipment to allow building to function conveniently & safely, these include:
- a) power supply and electrical installation
- b) gas supply
- c) fire service installation
- d) water supply and drainage
- d) lift service
- e) heating, ventilation and air-conditioning
- f) communication systems

Who will be involved in a typical construction project?

- 1. The architect, responsible for
 - a) design of the building (architectural)
 - b) represent client to perform all legal/statutory functions
 - c) as the chief coordinator and liaise with all the related parties for the required administration & construction works

Who will be involved in a typical construction project? (continue)

- 2. Consultant engineer, responsible for
 - a) design of the building (structural/ E&M)
 - b) supervise appointed contractors for the carrying out of the building services installation
 - c) check the completed E&M works for government inspection and handing over of the building back to client upon completion

Who will be involved in a typical construction project? (continue)

- 3. Quantity Surveyor, responsible for
 - a) cost advisor and accountant of a project
 - b) perform cost control and routine accounting functions
 - c) supervise and prepare payment for all involved construction works
 - d) prepare interim and final account at appropriate stage of the project

Construction processes from foundation to completion of a building

Part B: Basic Technology to Construct Buildings

The Site Formation Process

Further cutting inward to form a leveled site

Excavate to form the preliminary ground shape and profile

The Site Formation Process

Drilling bored-pile

Provide a cut-off wall by drilling bored-pile into groundas support for further excavation

The Site Formation Process

Excavation downward make possible with the introduction of the bored-pile wall

Substructure Works - constructing the foundation

Continued with the school example

Provide formwork to form the shape of pile cap

Constructing the foundation

Pile caps being formed. The larger one has the steel reinforcement being fixed, ready for the placing of concrete

The Site Formation Process

Example of large-scale site formation projects

Forming of access road and drainage system

Piles formed by percussion methods

H-pile driven using gravity drop

Precast circularsection pile driven by

Constructing the foundation

Other forms of foundation systems suitable for

larger projects

Precast concrete pile

Constructing the foundation

Other forms of foundation systems suitable for larger projects

Small diameter bored- pile

Constructing the foundation

Other forms of foundation

systems for larger projects

In-situ concrete pile (formed by drilling a bored-hole into ground using a steel casing)

Steel case to facilitate drilling

Various forms of drilling rig

Various forms of the drilling rig for pile max up to 900mm dia.

Constructing the sub-structure

Continued with previous school example

nstructing ground beams as the simplest form of substructure

Constructing the sub-structure

Ground beams detail

Placing concrete to form the ground floor slab

Constructing the superstructure

Detail of the beams and slab formwork

Construct the beams and floor slab of ground floor

Constructing the sub-structure Example of more complicated cases

Excavated pit for the forming of the building raft/sub-structure

Raymond Wong, CityU

45

Construction/forming of the raft, lift pit and the core wall structure

Close-up detail in the Phase 3 – steel fixing for the pile caps and ground beams

Phase 3 after concreting, signifying the basic completion of the entire substructure construction

Site formation almost completed ready for the handling over for superstructure construction

Constructing the superstructure

Building superstructure can be very huge in size and complex, below are some examples

Constructing a large scaled building project using traditional timber formwork

Constructing the superstructure

Other examples

Constructing a superstructure using steel formwork

Constructing the superstructure

Other examples

Constructing a superstructure using mechanical formwork

Constructing a super-structure using prefabricated concept (precast construction)

Constructing the superstructure Other examples

Constructing a superstructure using structural steel

Finishing a building

External Finishes

- a) Finishing up the exterior by laying wall tile (mosaic, ceramic tile or stone slab)
- b) By the use of other covering (cladding) system
 - cladding panel
 - curtain wall

External finishes - using curtain wall

Internal partitioning

- a) Material used brick or block
- b) Other partitioning systems or products
 - timber panel
 - precast concrete panel
 - dry wall
 - demountable wall

Finishing a building Internal partitioning using brickwork

Surface rendering - plaster

There are two types of plaster

- cement/sand plaster: floor, external wall or undercoat to internal walls
- cement/sand/lime plaster: to ceiling or surface coat to walls

Surface rendering – slab or tiled finish

- a) Ceramic tile floor (thicker, heavy duty), wall (thinner but finer) & external wall (tougher)
- b) Stone slab marble, granite or slate

Finishing

example of various kind of floor finish

What will be involved in building finishes?

- Provide proper finish and fitting out to a building, these include:
- a) provide internal partitioning
- b) seal up & decorate all exposed surfaces: to wall (both ext. & int.), floor & ceiling
- c) provide other functional elements in building: window, door, false ceiling, rails
- d) other essential interior fixture: sanitary appliances, bench, pantry, cupboard etc.

What will be involved in building services installation?

- Provide the essential electrical & mechanical equipment to allow building to function conveniently & safely, these include:
- a) power supply and electrical installation
- b) fire service installation
- c) water supply and drainage
- d) lift service
- d) heating, ventilation and air-conditioning
- e) communication systems

The architect, responsible for

- a) design of the building (architectural)
- b) represent client to perform all legal/statutory functions
- c) as the chief coordinator and liaise with all the related parties for the required administration & construction works

Who will be involved in a typical construction project? (continue)

- 2. Consultant engineer, responsible for
 - a) design of the building (structural/ E&M)
 - b) supervise appointed contractors for the carrying out of the building services installation
 - c) check the completed E&M works for government inspection and handing over of the building back to client upon completion

Who will be involved in a typical construction project? (continue)

- 3. Quantity Surveyor, responsible for
 - a) cost advisor and account of a project
 - b) perform cost control and routine accounting functions
 - c) supervise and prepare payment of all involved construction works
 - d) prepare interim and final account at appropriate stage of the project

Construction processes – from foundation to completion of a building

Part B:
Technical Understanding

Internal partitioning

- a) Material used brick or block
- b) Other system or product
 - timber panel
 - precast concrete panel
 - dry wall
 - demountable wall

Finishing a building Internal partitioning

Finishing a building - example of internal partition Dry wall system

Finishing a building

Surface rendering - plaster

- a) Kind of plaster
 - cement/sand plaster: floor, external wall or undercoat to internal walls
 - cement/sand/lime plaster: to ceiling or surface coat to walls
- Surface rendering slab or tiled finish
- a) Kind of tile floor (thicker,heavy duty), wall (thinner but finer) & external wall (tougher)
- b) Stone slab marble, granite or slate

Finishing – tiled finish

A<mark>pply</mark> wall tile (mosaic) to external wall

Applying wall tile to internal wall

Finishing

example of various

kind of floor finish

Other function elements

- a) Window
 - type: unit type, curtain wall or glass wall
 - material: cast iron, steel, aluminum or plastic
- b) door
 - type: single/double leafed, single/double swing, hollow/solid, flushed/paneled
 - metal: timber, iron/steel/stainless steel or aluminum

Finishing a building

- other function elements: Window

Grouting the window

Fixing a window into an opening

- other function elements: Window

Fixing a window unit onto the building frame

Finishing a building

Other function elements

- c) False ceiling
 - function: decorative, serviceable, fire resisting, accommodate and conceal ceiling services (e.g. light, a/c and ducts)
 - type: grid, panel, jointless system
 - functional:
 - material: timber, plastic broad, laminated metal, aluminum, mineral fiber, or glass wool

Well-finished interior of residential building

Well-finished interior for other functional space – lecture hall

Other function elements

- c) False ceiling
 - function: to accommodate and conceal ceiling services (e.g. light, a/c and ducts)
 - type-usual: grid, panel, jointless system
 - type-functional : decorative, serviceable, or fire resistant
 - material: timber, plastic broad, laminated metal, aluminium, mineral fiber, or glass wool

Finishing a building

- false ceiling

Electrical and Mechanical installation,
 provide the building services:

This includes – provision of power supply, lighting, air conditioning, fire services, lift services, water supply, tele-communication.

This presentation is so designed to give students, who are not studying building construction as a major subject, a brief understanding how technology is involved and applied in a building process. Hoping that the information here can serve this basic purpose.